首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3190篇
  免费   507篇
  国内免费   1289篇
测绘学   138篇
大气科学   269篇
地球物理   596篇
地质学   2831篇
海洋学   556篇
天文学   185篇
综合类   209篇
自然地理   202篇
  2024年   12篇
  2023年   24篇
  2022年   81篇
  2021年   82篇
  2020年   99篇
  2019年   126篇
  2018年   131篇
  2017年   133篇
  2016年   157篇
  2015年   157篇
  2014年   198篇
  2013年   239篇
  2012年   200篇
  2011年   246篇
  2010年   246篇
  2009年   268篇
  2008年   260篇
  2007年   275篇
  2006年   306篇
  2005年   282篇
  2004年   234篇
  2003年   211篇
  2002年   167篇
  2001年   132篇
  2000年   97篇
  1999年   91篇
  1998年   73篇
  1997年   66篇
  1996年   58篇
  1995年   56篇
  1994年   54篇
  1993年   57篇
  1992年   38篇
  1991年   34篇
  1990年   26篇
  1989年   14篇
  1988年   13篇
  1987年   13篇
  1986年   6篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   4篇
  1978年   2篇
  1977年   1篇
排序方式: 共有4986条查询结果,搜索用时 125 毫秒
91.
台风暴雨型浅层滑坡失稳机理研究   总被引:1,自引:0,他引:1  
针对台风暴雨耦合作用下浅层滑坡的失稳机理进行研究。在总结福建台风暴雨型滑坡灾害特征的基础上,提出风荷载对斜坡变形失稳的影响机理是通过植被造成坡体开裂,从而影响坡体的入渗规律。应用GeoStudio软件计算台风暴雨入渗条件下裂隙坡体中暂态非饱和渗流场的变化,以及对斜坡稳定性的影响。计算结果表明:裂隙坡体由于在裂隙处形成集中入渗点,雨水的入渗速度大于无裂隙的坡体,坡体达到饱和状态所需要的时间大为缩短。裂隙深度、间距对滑坡稳定系数的影响较大,裂隙深度越大、间距越小,在相同的降雨条件下滑坡的稳定系数越小,滑坡失稳需要的降雨时长越短。裂隙宽度对滑坡稳定性的影响相对较小。   相似文献   
92.
A finite element formulation is proposed and implemented for analysing the stability of excavated wells using the DiMaggio-Sandler constitutive elastoplastic model with a typical carbonate reservoir configuration. The quality of the finite element approximation is ensured by applying smooth curved elements adapted to the wellbore geometry, and hp adaptive finite element meshes in the plastic zone. General purpose procedures are defined to transfer the elastoplastic deformation history to newly created integration points. A breakout damage criterion is proposed based on the second invariant of the deviatoric plastic deformation tensor. This damage criterion is used to apply a mesh movement algorithm to represent material collapse. The automatic successive application of the breakout damage criterion results in elliptical realistically looking geometries obtained in experiments reported in the literature.  相似文献   
93.
地震力作用下土质边坡动态稳定性研究对实际边坡工程有着重要的意义。采用拟动力法结合简化毕肖普法研究坡顶抗滑桩加固土质边坡在地震力作用下的动态稳定性。尽管拟静力法是目前处理地震力最为广泛的方法之一,但其局限性在于无法考虑地震力随时间变化且忽略了地震波在土体中的传播。而拟动力法采用正弦波模拟地震波在土中传播,并考虑地震波从坡脚传递到坡顶的相位差以及阻尼力对边坡稳定性的影响,通过边坡安全系数的变化揭示土质边坡在地震力作用下的稳定性变化规律。将得到的结果与拟静力法进行对比,突出了拟动力法的优势。最后,考虑水平地震加速度系数、加速度幅值放大系数以及土体内摩擦角对边坡稳定性的影响,以期对实际工程提供理论借鉴。  相似文献   
94.
95.
Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and the need for a more general framework for estimating the factor of safety of long and infinite slopes involving non‐homogeneous soil profiles. The paper describes finite element methods that demonstrate the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to some counter‐intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
96.
Shuaipu Zhang  Mingan Shao 《水文研究》2017,31(15):2725-2736
Temporal stability of soil moisture has been widely used in hydrological monitoring since it emerged. However, the spatial analysis of temporal stability at the landscape scale is often limited because of insufficient sampling numbers. This work made an effort to investigate the spatial variations of temporal stability of soil moisture in an oasis landscape. The specific objectives of the study were to explore the spatial patterns of temporal stability and to determine the controlling factors of temporal stability in the desert oasis. A time series of soil moisture measurements were gathered on 23 occasions at 118 locations over 3 years in a rectangular transect of approximately 100 km2. The nonparametric Spearman's rank correlation coefficient, standard deviation of relative difference (SDRD), and mean absolute bias error (MABE) were used to quantify the temporal stability of soil moisture. Results showed that the temporal stability of soil moisture was depth dependent and season dependent. The spatial pattern of soil moisture in a deep soil layer and between two same seasons generally had a high temporal stability. SDRD and MABE were spatially autocorrelated and exhibited strong spatial structures in the geographic space. The concept of temporal stability can be extended to describe the time‐stable areas of soil moisture with geostatistics. There were great differences between SDRD and MABE in describing the temporal stability of soil moisture and in identifying the controlling factors of temporal stability. In this case, MABE was a better alternative to estimate the areal mean soil moisture using representative locations than SDRD. Land use type, soil moisture condition, and soil particle composition were the dominant controls of temporal stability in the oasis. These insights could help to better understand the essence of temporal stability of soil moisture in arid regions.  相似文献   
97.
Conceived as a potential alternative to the classical design methods employed for analyzing the stability of underground structures driven in jointed rocks, the homogenization approach stems from the heuristic idea that, from a macroscopic point of view, a rock mass cut by a network of joints may be perceived as a homogenized continuum. The strength properties of the latter can be theoretically obtained from the failure conditions of its individual constituents: rock matrix and joint interfaces. At the material level, the limit analysis reasoning is used in the context of homogenization to formulate the homogenized strength criterion of a jointed rock mass in the particular situation of a single set of parallel joints. As it could be expected, the obtained closed‐form expressions show the strength anisotropy induced by joint preferential orientation. The support functions (π functions) associated with the homogenized strength criterion are also determined in both plane strain and three‐dimensional cases. This criterion is then applied to the investigation of stability analysis of a tunnel excavated in a jointed rock mass. Upper bounds estimated of the stability factor are derived from the implementation of the kinematic approach directly on the homogenized underground structure. Finally, the approach is applied to analyze and discuss the collapse of the Pinheiros subway station (São Paulo, Brazil). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
98.
The kinematic approach in combination with numerical simulation is used to examine the effect of pore water pressure on tunnel face stability. Pore water pressure distribution obtained by numerical calculations using FLAC3D is used to interpolate the pore water pressure on a 3D rotational collapse mechanism. Comparisons are made to check the present approach against other solutions, showing that the present approach improves the existing upper bound solutions. Results obtained indicate that critical effective face pressure increases with water table elevation. Several normalized charts are also presented for quick evaluation of tunnel face stability. At the end of the paper, the influence of anisotropic permeability on tunnel face stability is also discussed, showing that the isotropic model leads to an overestimation of the necessary tunnel face pressure for anisotropic soils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
99.
A new finite element model to analyze the seismic response of deformable rocking bodies and rocking structures is presented. The model comprises a set of beam elements to represent the rocking body and zero‐length fiber cross‐section elements at the ends of the rocking body to represent the rocking surfaces. The energy dissipation during rocking motion is modeled using a Hilber–Hughes–Taylor numerically dissipative time step integration scheme. The model is verified through correct prediction of the horizontal and vertical displacements of a rigid rocking block and validated against the analytical Housner model solution for the rocking response of rigid bodies subjected to ground motion excitation. The proposed model is augmented by a dissipative model of the ground under the rocking surface to facilitate modeling of the rocking response of deformable bodies and structures. The augmented model is used to compute the overturning and uplift rocking response spectra for a deformable rocking frame structure to symmetric and anti‐symmetric Ricker pulse ground motion excitation. It is found that the deformability of the columns of a rocking frame does not jeopardize its stability under Ricker pulse ground motion excitation. In fact, there are cases where a deformable rocking frame is more stable than its rigid counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
100.
The primary focus in this work is on proposing a methodology for the assessment of stability of natural/engineered slopes in clayey soils subjected to water infiltration. In natural deposits of fine‐grained soils, the presence of water in the vicinity of minerals results in an interparticle bonding. This effect cannot be easily quantified as it involves complex chemical interactions at the micromechanical level. Here, the evolution of strength properties, including the apparent cohesion resulting from initial suction at the irreducible fluid saturation, is described by employing the framework of chemoplasticity. The paper provides first the formulation of the problem; this involves specification of the constitutive relation, development of an implicit return mapping scheme, and the outline of a coupled transient formulation. The framework is then applied to examine the stability of a slope subjected to a prolonged period of intensive rainfall. It is shown that the water infiltration may trigger the loss of stability resulting from the degradation of material properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号